
Week 13. Final exam review
1. True or false?
A. I claim that linked lists have the following advantages over the arrays:

 They allow insertion in the middle in a constant time

 They allow access to the element at position k in a constant time

 They use less memory

 The search is faster because we are following the pointers

B. I claim that for the following variables:
char *a; int *b;

 a and b store values of different types

 sizeof(a) ≠ sizeof(b)

 sizeof(*a) ≠ sizeof(*b)

C. I claim that for the following declarations:
char a [] = "abcde"; char *b="abcde";

 sizeof(a)=sizeof(b)

 a and b both are variables that store an address

 we can do both a=b and b=a

 the amount of memory used is the same for both declarations

 we can do both a[1] = ‘d’; and b[1]=’d’;

 we can pass both a and b as parameters to a function func (char *c)

2. What is legal?
int x, y;

int *px, *py, *p;

float *pf;

px = &x;

py = &y;

p = px + py;

p = px * py;

p = px + 10.0;

pf = px;

3. Linked lists
Given new data type node:
typedef struct node{

 int data;

 struct node * next;

}node;

 How do we declare a list of nodes?

 How do we insert a new node new_node after the k-th element (suppose k=2) of the list?

 How do we make a circular list of nodes?

 How can we reverse the order of elements in the list in one iteration?

 How can we add new element on top of the list in a void function?

node *get234List () {

node * head;

node * a = (node *)calloc (1, sizeof(node));

a->data = 2;

node * b = (node *)calloc (1, sizeof(node));

b->data = 3;

node *c = (node *)calloc (1, sizeof(node));

c->data = 4;

a->next = b;

b->next = c;

head = a;

return head;

}

void addOnTop (node * head, int value) {

node * d = (node *)malloc (sizeof(node))

d->data = value;

 if (head == NULL)

 head = d;

 else {

 d->next = head->next;

 head = d;

 }

}

int main() {

 node * head = get234List();

 addOnTop (head, 1);

 //what is the length of the list now?

}

4. Memory segments
Draw memory diagram and say where each variable is stored and to which memory segment it points to

(in case it is a pointer):

A. Fun
int fun (char a, char b) {

 a++;

 b++;

 return b;

}

char a=’a’; //value 97

char b=’b’;

int (*func) (char, char);

int main () {

 func = fun;

 char c = (char) func (a, b);

 printf (“%c %c %c\n”, a, b, c);

//what is printed by the way?

}

B. Even more fun
int * more_fun (char *a) {

 a = malloc (5);

 *a = ‘a’;

 *(a+1) = ‘b’;

 *(a+2) = 0;

 int result[] = {1,2};

 return result;

}

int main () {

 char *str;

 int *ip = more_fun (str);

 printf (“%d %s\n”, *ip, str);

}

5. Pass by value (even pointer variables)
void init_array1 (char * a, int size) {

a = (char *) malloc (size);

strncpy(a, "new value", size-1);

a[size-1] = '\0';

}

int main() {

char * y = "abba";

init_array1 (y, 8);

fprintf (stdout, "Array after init1 - %s\n", y);

}

6. File descriptors
A. If you want a parent process to read from a pipe and a child process to write to a pipe, which file

descriptors do you leave open?

Parent: fds[0] or fds[1]

Child: fds[0] or fds[1]

B. You want to implement the following shell pipe in a C program

sort file1 | head

 Which process should be the parent and which one the child?

 How would you use dup2 to set standard output of a child process to the writing end of a pipe, and

standard input of a parent process to the reading end of the pipe?

Parent file descriptors: 0, 1, 2, fds[0], fds[1]

dup2(________, ________)

Child file descriptors: 0, 1, 2, fds[0], fds[1]

dup2(________, ________)

C. Sockets

Server code:

int a= socket(family, type, protocol);

int b= accept(a, &clientAddr, &addrLen);

Client code:

int c= socket(family, type, protocol);

int d=connect(c, &foreignAddr, addrlen);

Which of the file descriptors a,b,c (or d) are used for sending data between server and client?

7. Handling signals
 How can we make our program to ignore an interrupt signal?

 How can we make sure that our signal handler is not interrupted in the middle by an interrupt
signal?

 How can we make sure that the important section of code gets uninterrupted by any signal?

