Week 13. Final exam review

1. True or false?

A. | claim that linked lists have the following advantages over the arrays:
They allow insertion in the middle in a constant time

They allow access to the element at position k in a constant time
They use less memory

The search is faster because we are following the pointers

B. Iclaim that for the following variables:
char *a; int *b;
e aand b store values of different types
e sizeof(a) # sizeof(b)
e sizeof(*a) # sizeof(*b)

C. Iclaim that for the following declarations:
char a [] = "abcde"; char *b="abcde";

e sizeof(a)=sizeof(b)

e aand b both are variables that store an address

e we can do both a=b and b=a

e the amount of memory used is the same for both declarations

e we can do both a[1] = ‘d’; and b[1]="d’;

e we can pass both a and b as parameters to a function func (char *c)

2. What is legal?

int x, vy;
int *px, *py, *p;

float *pf;

px = &x;

py = &y;

p = px + py;

P = px * py;

p = px + 10.0;
pf = px;

3. Linked lists

Given new data type node:
typedef struct node{
int data;
struct node * next;
}node;

e How do we declare a list of nodes?

e How do we insert a new node new_node after the k-th element (suppose k=2) of the list?
e How do we make a circular list of nodes?

e How can we reverse the order of elements in the list in one iteration?

e How can we add new element on top of the list in a void function?

node *get234List () {

node * head;

node * a = (node *)calloc (1, sizeof (node)):;
a->data = 2;

node * b = (node *)calloc (1, sizeof (node)):;
b->data = 3;

node *c = (node *)calloc (1, sizeof (node));
c->data = 4;

a->next = b;

b->next = c;

head = a;
return head;

}

void addOnTop (node * head, int value) {
node * d = (node *)malloc (sizeof (node))
d->data = value;
if (head == NULL)
head = d;
else {
d->next = head->next;
head = d;

int main () {
node * head = get234List();
addOnTop (head, 1);
//what is the length of the list now?

4. Memory segments

Draw memory diagram and say where each variable is stored and to which memory segment it points to
(in case it is a pointer):

A. Fun

int fun (char a, char b) {
at++;
b++;

return b;
}
char a='a’; //value 97
char b="b’;

int (*func) (char, char);

int main () {
func = fun;
char ¢ = (char) func (a, b);
printf (“%c %c %c\n”, a, b, c);

//what is printed by the way?

B. Even more fun
int * more fun (char *a) {

a = malloc (5);
*a — \al;
*(a+l) = ‘b’;
*(at+2) = 0;

int result[] = {1,2};
return result;

}

int main () {
char *str;
int *ip = more fun (str);

printf (“%d %$s\n”, *ip, str);

5. Pass by value (even pointer variables)

void init arrayl (char * a, int size) {

a = (char *) malloc (size);
strncpy(a, "new value", size-1);
al[size-1] = '\0"';

}

int main () {

char * y = "abba";
init_arrayl (y, 8);
fprintf (stdout, "Array after initl - %s\n", vy);

6. File descriptors

A. If you want a parent process to read from a pipe and a child process to write to a pipe, which file
descriptors do you leave open?

Parent: fds[0] or fds[1]

Child: fds[0] or fds[1]

B. You want to implement the following shell pipe in a C program
sort filel | head

e Which process should be the parent and which one the child?
e How would you use dup2 to set standard output of a child process to the writing end of a pipe, and
standard input of a parent process to the reading end of the pipe?

Parent file descriptors: 0, 1, 2, fds[0], fds[1]

dup2(,)

Child file descriptors: 0, 1, 2, fds[0], fds[1]

dup2(,)

C. Sockets

Server code:

int a= socket(family, type, protocol);
int b= accept(a, &clientAddr, &addrlen);
Client code:

int c¢= socket(family, type, protocol);
int d=connect(c, &foreignAddr, addrlen);

Which of the file descriptors a,b,c (or d) are used for sending data between server and client?

7. Handling signals

e How can we make our program to ignore an interrupt signal?

e How can we make sure that our signal handler is not interrupted in the middle by an interrupt
signal?

e How can we make sure that the important section of code gets uninterrupted by any signal?

